Design and evaluation of a new automated method for the segmentation and characterization of masses on ultrasound images
نویسندگان
چکیده
Segmentation of masses is the first step in most computer-aided diagnosis (CAD) systems for characterization of breast masses as malignant or benign. In this study, we designed an automated method for segmentation of masses on ultrasound (US) images. The method automatically estimated an initial contour based on a manually-identified point approximately at the mass center. A two-stage active contour (AC) method iteratively refined the initial contour and performed self-examination and correction on the segmentation result. To evaluate our method, we compared it with manual segmentation by an experienced radiologists (R1) on a data set of 226 US images containing biopsy-proven masses from 121 patients (44 malignant and 77 benign). Four performance measures were used to evaluate the segmentation accuracy; two measures were related to the overlap between the computer and radiologist segmentation, and two were related to the area difference between the two segmentation results. To compare the difference between the segmentation results by the computer and R1 to inter-observer variation, a second radiologist (R2) also manually segmented all masses. The two overlap measures between the segmentation results by the computer and R1 were 0.87+0.16 and 0.73+0.17 respectively, indicating a high agreement. However, the segmentation results between two radiologists were more consistent. To evaluate the effect of the segmentation method on classification accuracy, three feature spaces were formed by extracting texture, width-to-height, and posterior shadowing features using the computer segmentation, R1’s manual segmentation, and R2’s manual segmentation. A linear discriminant analysis classifier using stepwise feature selection was tested and trained by a leave-one-case-out method to characterize the masses as malignant or benign. For case-based classification, the area z A under the test receiver operating characteristic (ROC) curve was 0.90±0.03, 0.87±0.03 and 0.87±0.03 for the feature sets based on computer segmentation, R1’s manual segmentation, and R2’s manual segmentation, respectively.
منابع مشابه
A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images
Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...
متن کاملA Semi-Automated Algorithm for Segmentation of the Left Atrial Appendage Landing Zone: Application in Left Atrial Appendage Occlusion Procedures
Background: Mechanical occlusion of the Left atrial appendage (LAA) using a purpose-built device has emerged as an effective prophylactic treatment in patients with atrial fibrillation at risk of stroke and a contraindication for anticoagulation. A crucial step in procedural planning is the choice of the device size. This is currently based on the manual analysis of the “Device Landing Zone” fr...
متن کاملروشی جدید به منظور تعیین مرز ضایعات در تصاویر فراصوت از بافت پستان: اصلاح وفقی ضریب انتشار ناهمسانگرد
Accurate segmentation plays a vital role in automated analysis of ultrasonic images. A new method based on adaptive anisotropic diffusion is introduced here for lesion detection in ultrasonic images of the breast. In this method, a hypothesis testing framework is defined first to separate lesions from healthy breast tissue. Then the boundary of lesion is estimated by adaptive anisotropic diffus...
متن کاملDesign, Evaluation and Prototyping of a New Robotic Mechanism for Ultrasound Imaging
This paper presents a new robotic mechanism for ultrasound imaging. The device is placed on a patient's body by an operator, and an ultrasound expert controls the motions of the device to obtain ultrasound images. The paper focuses on the robotic mechanism that performs ultrasound imaging. The design of the mechanism is based on two approaches to produce center of motion for an ultrasound probe...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کامل